DNA template requirements for human mismatch repair in vitro.

نویسندگان

  • Keith Iams
  • Erik D Larson
  • James T Drummond
چکیده

The human mismatch repair pathway is competent to correct DNA mismatches in a strand-specific manner. At present, only nicks are known to support strand discrimination, although the DNA end within the active site of replication is often proposed to serve this role. We therefore tested the competence of DNA ends or gaps to direct mismatch correction. Eight G.T templates were constructed which contained a nick or gap of 4, 28, or approximately 200 nucleotides situated approximately 330 bp away in either orientation. A competition was established in which the mismatch repair machinery had to compete with gap-filling replication and ligation activities for access to the strand discontinuity. Gaps of 4 or 28 nucleotides were the most effective strand discrimination signals for mismatch repair, whereas double strand breaks did not direct repair to either strand. To define the minimal spatial requirements for access to either the strand signal or mismatch site, the nicked templates were linearized close to either site and assayed. As few as 14 bp beyond the nick supported mismatch excision, although repair synthesis failed using 5'-nicked templates. Finally, asymmetric G.T templates with a remote nick and a nearby DNA end were repaired efficiently.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DNA mismatch correction.

PERSPECTIVES ANDUMMARY .............................................................. 435 BIOLOGY OFMISMATCH ORRECTION ................................................... 437 Evidence for Mismatch Processing in Vivo .................................................. 437 Postreplication Repair of Biosynthetic Errors ............................................... 438 dam-Independent Mismatch Cor...

متن کامل

Absence of MutSβ leads to the formation of slipped-DNA for CTG/CAG contractions at primate replication forks.

Typically disease-causing CAG/CTG repeats expand, but rare affected families can display high levels of contraction of the expanded repeat amongst offspring. Understanding instability is important since arresting expansions or enhancing contractions could be clinically beneficial. The MutSβ mismatch repair complex is required for CAG/CTG expansions in mice and patients. Oddly, by unknown mechan...

متن کامل

DNA polymerase delta is required for human mismatch repair in vitro.

HeLa nuclear extract was resolved into a depleted fraction incapable of supporting mismatch repair in vitro, and repair activity was restored upon the addition of a purified fraction isolated from HeLa cells by in vitro complementation assay. The highly enriched complementing activity copurified with a DNA polymerase, and the most pure fraction contained DNA polymerase delta but was free of det...

متن کامل

DNA structures generated during recombination initiated by mismatch repair of UV-irradiated nonreplicating phage DNA in Escherichia coli: requirements for helicase, exonucleases, and RecF and RecBCD functions.

During infection of homoimmune Escherichia coli lysogens ("repressed infections"), undamaged nonreplicating lambda phage DNA circles undergo very little recombination. Prior UV irradiation of phages dramatically elevates recombinant frequencies, even in bacteria deficient in UvrABC-mediated excision repair. We previously reported that 80-90% of this UvrABC-independent recombination required Mut...

متن کامل

Promiscuous mismatch extension by human DNA polymerase lambda

DNA polymerase lambda (Pol lambda) is one of several DNA polymerases suggested to participate in base excision repair (BER), in repair of broken DNA ends and in translesion synthesis. It has been proposed that the nature of the DNA intermediates partly determines which polymerase is used for a particular repair reaction. To test this hypothesis, here we examine the ability of human Pol lambda t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 277 34  شماره 

صفحات  -

تاریخ انتشار 2002